Generating Hardware Description
with
Target-Independent Code Generator
Zheng, Hongbin
etherzhhb@gmail.com

..

Hello | am Zheng, Hongbin today | will introduce our LLVM based HLS framework, which is built upon the Target-Independent
Code Generator.

Outline

* Introduction

* Overview of the Shang HLS framework
* The Cross-level Engine

* Kernel-only Software Pipelining

* Experimental Results and Further Work

In this talk | will first briefly introduce what HLS is, and then given an overview of the HLS framework, named “Shang”.
After that | will provides some details of the HLS framework, including the Cross-level engine, and the Kernel-only Software
Pipelining technique implemented in the framework.

At last, | will give the experimental result and the Further Work.

* Introduction

Outline

High-level Synthesis

* What is High-level Synthesis (HLS)?

— Generate Hardware description from High-level
Languages (HLL), automatically.

HLL

Transformations

Hardware
Accelerator

So first of all, some people may ask what is HLS?
HLS is a technique that automatically generate the Hardware Description of the hardware accelerator from High-level Language,
which is designed for software development only, like C/C++, C# and Java.

High-level Synthesis

* What is High-level Synthesis (HLS)?

— Generate Hardware description from High-level
Languages (HLL), automatically.

HLL * Scheduling:
-Assign the timing to each operation.
-Determine the speed of the accelerator.
* Functional Units/Registers Allocation and binding:
-Allocate hardware resources,

Hardware -And assign the operations to the allocated resources.
Accelerator -Determine the resource requirement.
*®

During the transformation process, there are two key tasks should be perform:
That is Scheduling and Resource allocation and binding.
At this point, HLS share some similarity with software compilation process.

High-level Synthesis

* What is High-level Synthesis (HLS)?

— Generate Hardware description from High-level
Languages (HLL), automatically.

HLL

Transformatlons
+ Application-specific

Hardware Deliver better speed-performance
Accelerator Consume less energy

2 LLVM Developers' Meetin,

At last HLS generate the description for the hardware accelerator, which describe the structure and the timing of the circuit.
With the Hardware accelerator, we can achieve better speed-performance while consuming less energy,

at the cost of hardware resource usage and development time,

comparing to implementing the same functionality with general-propose processors.

High-level Synthesis

* What is High-level Synthesis (HLS)?

— Generate Hardware description from High-level
Languages (HLL), automatically.

* Why HLS?
— Better performance, lesser power consumption ...
— Achieve good quality without hardware expert...
— Shorter development cycle ...

So the advantages of the hardware accelerator may had already answer why we need HLS.

But that not the most important reason, because the hardware accelerator may be designed manually.

The may reason for using HLS is that, HLS can achieve good quality, or at least, not so bad quality with a hardware newbie, with a
shorter development time than manually design.

HLS Example
* There exist some FPGAs with ARM core:
— Arria V SoC FPGA by Altera

— 2Zynq by Altera Xilinx

Programmable Logic

Processor
Core

Field-Programmable Gate Array

Here | can give an example of HLS.
Some people may know the some type of ARM processor core had been integrated with the some reconfigurable device.

HLS Example

* There exist some FPGAs with ARM core:
— Arria V SoC FPGA by Altera
— 2Zynq by Altera Xilinx
* The programmable logic can implement the

hardware accelerator.
Rrocessor Accelerator
Core

Field-Programmable Gate Array

2012 LLVM Developers' Meetin

Such device allow us run software programs on the ARM core while implementing the accelerator on the reconfigurable logic.

HLS Example

Compute- i Accelerat
intensive I High-level Synthesis ceeprator
2 L Description
section]
: Machi
e — asnne
Code
Implementation

(Related tools are
provided by vendor)

~
Processor

Core
3 5

~
\

Software Accelerator

Program

\

Field-Programmable Gate Array

2012 LM Developers' Meeting 10

So given a program to run on these device, we can first profile the program to identify the “compute-intensive section” and then
implement it as hardware accelerator, with the help of a HLS tool.
While letting the other part of the program run on the processor core.

Such design flow can leverage the computational power of the reconfigurable logic and the flexibility of the processor core.

Outline

* Overview of the Shang HLS framework

After we have an idea about HLS, | am going to introduce the Shang HLS framework.

11

The Shang HLS framework

Automatically translate C to Hardware.

Advance hardware-specific optimizations:

— Subword-level and Bit-level optimizations.

— Cross BB parallelism exploitation.

— ... all based on the Target-Independent CodeGen.
Platform Independent.

And open source:
— https://github.com/SysuEDA/Shang

The Shang HLS framework is developed as a research project.
It automatically translate C to Hardware, which some advance optimizations targeting the reconfigurable logic,

For example, it optimize the program at subword-level and bit-level, it support global code motion to exploit the parallelism
beyond the BB boundaries.

In addition, the framework supports both Xilinx FPGA and Altera FPGA, with the help of the embedded scripting engine.
At last the framework is opensource.

Flow Overview

/ C Specification o= Compilation (!
Stage 1: Generic
Cross-level Engine Generic Optimizations Transformations
Resource Usage Analysis - With low-level
Data-path Synthesis M Loopunrelllng & Puncisin informgtion
- inlining
LUT Mappi v ABC
spping (By ABC) _IWr LLVM-IR Lowering
Bit-level Delay Analysis = - n
‘ Early Data-path Synthesis
% & Mux pipelining, etc. Stage 2: HLS-
Constraints Scheduling (Mixing SDC specific
-The delay and cost of FUs scheduling and Software | Transformations
Target FPGA archi Info. pipelining)
-Downstream tools constraints FU Allocation & Binding
fenpbtc I e HLSIR Lowering Stage 3: RTL
-System-bus interfacing scripts Gmikoalk it
Timing Annotation ——
behavior-level
|Emlﬂtdde‘l LUA Scripting Engine |-‘- Code Generation information

Timing Constraints (e.g.
set_multi_cycles_path’

System Bus Verilog HDL

Interface

An overview of the HLS flow in the framework is given in this slide.

In general, the flow can be divided into three stages, each stage works at different abstract level.

At the same time, there is “Cross-level Engine” providing the low-level information to the high-level transformations.

In addition, the framework embedded an LUA scripting engine to read the platform-specific information and generate platform-

specific constructs.

13

Intermediate Representations

Stage 1: :!entric

LLVM IR Transformations

With low-level
information

Stage 2: HLS-

Machine Code specilic
Transformations

Stage 3: RTL,
Synthesis with
behavior-level

RTL Netlist information

Jerilog HDL

2012 LLVM Developers' Meeting 14

There is different kinds of IRs for each stages in the synthesis flow, including LLVM IR, Machine Code and RTL Netlist.

HLS-specific Machine Code

A virtual instruction set targeting FPGA.
Contains special instructions:

— Bit concatenation, subword extraction,
look-up table ... e

Transformations

All instructions are predicated. |

R

— Enable some advance control construct. | -5
Represents the behavior of the design.
— In more details than LLVM IR. et -/

15

RTL netlist

* Derived from the scheduled and bound
Machine Code.

* Explicitly describe the HW:
— The Functional Units,
— And how they are connected.

* The data transactions on the registers:
— At which cycle?
— Under what condition?

Ba
|

Stage 3: RTL
Synthesis with

}
-

16

Intermediate Representations

Stage 1: !enﬂic

Transformations
LLVM IR With low-level
information

Stage 2: HLS-
Machine Code specilic
Transformations

Stage 3: RTL,
Synthesis with

behavior-level
RTL Netlist

information

Jerilog HDL

2012 LLVM Developers' Meeting

17

The closer to the end of the low the IR located, the more details are exposed.

17

But the freedom of transformations is also reduced at the low level, because they need to preserve the constraints inherit from

the High-level IRs.

Intermediate Representations

Freedom
Stage 1: Jenﬂi:
Transformations
LLVM IR With low-level
information
Stage 2: HLS-
Machine Code el
Transformations
- Stige 3: RTL
Synthesis with
: behavior-level
RTL Netlist information
v Jerilog HDL ;

2012 LLVM Developers' Meeting

18

Cross-level Analyses/Optimizations

Stage 1: !enﬂic

Transformations
LLVM IR With low-level

information

Stage 2: HLS-

Machine Code specific
Transformations

Stage 3: RTL,
Synthesis with
behavior-level
RTL Netlist information

Jerilog HDL

2012 LLVM Developers' Meeting 19

At the same time, cross reference is supported.

19

Memory Dependency

Stage 1: :!entric

Transformations
LLVMIR With low-level
information
Stage 2: HLS-
’ Machine Code speciic
MachineMemOperan ‘Transformations

Stage 3: RTL,
Synthesis with
: behavior-level
RTL Netlist information
Jerilog HDL
2012 LLVM Developers' Meeting 20

For example, the scheduler can query the memory dependencies with the MachineMemOperand.

20

Delay/Cost Estimation

Transformations
LLVM IR With low-level
information

Stage 2: HLS-
Machine Code specific
Transformations

Stage 3: RTL,
Synthesis with
: behavior-level
RTL Netlist information
Jerilog HDL

2012 LLVM Developers' Meeting

Delay and cost estimation at high-level is provided by the cross-level engine.

21

LLVM IR

Machine Code

RTL Netlist

2012 LLVM Developers' Meeting

Timing annotation

Stage 1: :!entric

Transformations
With low-level
information

Stage 2: HLS-
specific
Transformations

Stage 3: RTL,
Synthesis with
behavior-level

information

Jerilog HDL

22

The timing information will also be annotated to the RTL Netlist, which means retiming with scheduling result is possible.

22

Flow implementation

»

Compilation

Generic Optimizations

LLVM IR Passes M]

uf L

oop-unrolling & Function
inlining

Stage 1: Generic

Transformations

With low-level
information

LLVM-IR Lowering

MachineFunction \E

arly Data-path Synthesis

Code Generation

: Const

ulti_cycles_path)

traints (e.g.

& Mux pipelining, etc. Stage 2: HLS-
Passes, s
Based on a HLS- __plpelining)_
. . FU Allocation & Binding
sp ecific virtual HLS-IR Lowering sSIag; SE'R'I:];
fon ynt E;)“ witl
_ instruction set. mie den behavior-level

information

23

Fitting HLS flow into CodeGen

* Scheduling

— Build the Scheduling Graph based
on pre-register-allocation Machine
code,.

LLVM. owering

Early Data-path Synthesis
& Mux pipelining, etc.
Scheduling (Mixing SDC
scheduling and Software
pipelining)

FU Allocation & Binding

24

Fitting HLS flow into CodeGen

* Scheduling

— Build the Scheduling Graph based
on pre-register-allocation Machine LR Lowering
co de EII:le_-ua;‘h‘S?ml:ais

— Pack instructions into bundles hEen s
according to the scheduling results, | ¥vatection & binding

Wit

25

Fitting HLS flow into CodeGen

* Binding
— Maodel all resource with physical
registers.

LLVM-IR Lowering

Early Data-path Synthesis
& Mux pipelining, etc.

Scheduling (Mixing SDC
scheduling and Software
pipelining

FU Allocation & Binding

26

Fitting HLS flow into CodeGen

* Binding
— Maodel all resource with physical
registers.
— LLVM helps to eliminate the PHls.

LLVM. owering

Early Data-path Synthesis
& Mux pipelining, etc.

Scheduling (Mixing SDC
scheduling and Software

pipelining)

FU Allocation & Binding

27

Fitting HLS flow into CodeGen

* Binding
— Maodel all resource with physical
registers.
— LLVM helps to eliminate the PHls.

— LLVM helps to build the live-
interval.

LLVM. owering

Early Data-path Synthesis
& Mux pipelining, etc.
Scheduling (Mixing SDC
scheduling and Software
pipelining)

FU Allocation & Binding

28

Fitting HLS flow into CodeGen

* Binding
— Maodel all resource with physical
registers.
— LLVM helps to eliminate the PHls.

— LLVM helps to build the live-
interval.

— Perform LLVM physical register
binding to solve the problem.

LLVM. owering

Early Data-path Synthesis
& Mux pipelining, etc.
Scheduling (Mixing SDC
scheduling and Software
pipelining)

FU Allocation & Binding

29

Outline

* The Cross-level Engine

30

The cross-level engine provides the low-level information about the data-path, that is the computational part of the accelerator,

to high-level transformations.

Cross-level Engine

/ I s o B

Cross-level Engine

Resource Usage Analysis

Data-path Synthesis
LUT Mapping (By ABC)
Bit-level Delay Analysis

31

CLE Internal

OLSIR [/ / LIVMAR

v v
Data-path Builder (With On-the-fly

Opt
______) 4
| Preserve the | Technology Mapping (Map logic Control-path
Lang?pﬂh_l operations to LUTs) Cost Heuristics

Optimized
HLS-IR

Close-to-final Data-
ath RTL-netlist

HLS-IR Rewriter I | Cost Estimator I(—

IDclay Eslimatorl

2012 LLVM Developers' Meetin

Specifically, it first build a close-to-final data-path netlist with bit-level/subword-level optimiations and Technology mapping.
With the close-to-final netlist, we can either rewrite it back to high-level IR, or estimate its implementation cost.

Early Data-path Synthesis

wmreecmf HLS-IR [[P i3 e
A ’ 4 o

1'::]@{\:{'!; i

b Phapoages

S

Pty Usths it £ 5 Rewrite st Joatipder
R : { o 1L

2012 LLVM Developers' Meeting 33

We call the bit-level/subword-level optimiations and Technology mapping in the cross-level engine as “Early Data-path Synthesis”.
| will give an example of the “Early Data-path Synthesis” on the machine code before scheduling and binding.
Essentially, it builds an whole function DAG, perform optimize on it and rewrite it back.

Early Data-path Synthesis - Example

Machine Code

vregl[16] = load ...
vregd[16] = vregl[16] >> 8

vreg2[16] = PHI ...
vreg5[16] = vreg2[16] & Oxff
vreg7[16] = vreg4[16] + vreg5[16]

vregb[16] = vreg3[16] << 9
vreg8[16] = vreg7[16] + vreg6[16]

Supposed we started from this piece of machine code.
It contains addition, bit-wise and and shift. As well as load and PHIs

34

Early Data-path Synthesis - Example

Machine Code Data-path of RTL netlist
8
vregl[16] = load ... \ j
vregd[16] = vregl[16] >> 8
€ Oxff

> \ /

vreg2[16] = PHI ...

9

vreg5[16] = vreg2[16] & Oxff
vreg7[16] = vreg4[16] + vreg5[16] & l
vregb[16] = vreg3[16] << 9 \

vreg8[16] = vreg7[16] + vreg6[16]

First of all, a DAG is built according to the Machine Code.
the instruction that cannot be optimized, e.g. load and PHI, are treated as unknown nodes, like SCEV.
In fact the Early Data-path Synthesis is somehow like SCEV, except it can also perform HLS-specific optimizations.

Early Data-path Synthesis - Example
NN NN i j
16D]]]:D:D8) \'
EREDEEEA AR

|
Bit
Concatenation

16 0
[ofofofolofofofo] T I T TT 1]

Oxff

In the netlist, we may be able to identify some optimization opportunities.
For example, logical-shifted by constant amount can be replaced by subword extraction and bit concatenation.

Early Data-path Synthesis - Example

16 0
AENEEENNNNENNNEN 8
" <
xtraction \t ‘{
L Bcii6] 3 Oxif
o’ ' /
»_.‘) /
[ofofofofo]o]o]o] 2

Bit
Concatenation

16 0
(ofo[o]o]ofofolo] TTTTTTT]

Hence we can rewrite the shift like this.

37

Early Data-path Synthesis - Example

v J
o) < EE> o) B>
P

N\ i \
¢
N

By applying similar optimizations, we can obtain a netlist like this, we replaced nodes by subword-extraction and bit-
concatenation whenever possible, because these two operations are zero cost in the hardware accelerator.

Early Data-path Synthesis - Example

16 Oeloole ol [T T T IL]
16 + 0
[ofofofofofofefol TTTT T T T Jisvi

6 3 Rl 3 62
[ofofofofofofol TTTTTTTT]

At the same time, bit-concatenation can provides the bit-mask information explicitly.
Hence we could take the advantage of the bit-mask to optimize the arithmetic operations.

Early Data-path Synthesis - Example

0 (8b)

16 0
[ofofofofofofo[o] TTTTTTT]

16 [o[ofo[olo[o [T T T T[]

' oolelololo[T T TTTTII Ig TN \ ‘

Hence, we can replace the 16-bit addition by a 8-bit addition and a bit-concatenation.

40

Early Data-path Synthesis - Example

Finally we can get a netlike this, you can see that the operations are replaced by the ones that have a lower cost.

41

Early Data-path Synthesis - Example

;r;'egl[lsl =load ... @ \l,
vreg4[8] = subwd(vregl1[16], 8, 0) m

vreg2[16] = PHI ...
vreg5[16] = subwd(vreg2[16], 8, 0)
vreg7[9] = vreg4[8] + vreg5[8]

vregb[7] = subwd(vreg3[16], 7, 0)
vreg8[16] = bitcat(vregb[7], vregb[9])

2012 | 1\ Developers' Meeting

At last the Machine Code is rewritten according to the optimized netlist.

42

Early Data-path Synthesis - Example

* Original Resource usage:

vregl[16] = load ... — 2x 16-bit adder
vreg4[8] = subwd(vregl1[16], 8, 0) + Optimized:

\ — 1x 9-bit adder

vreg5|16] = subwd(vreg2[16], &, 0) — 16-hit adder + 16-bit adder
vreg7[9] = vreg4[8] + vreg5[8] L.
* Optimized:

e — 9-bit adder

vreg6[7] = subwd(vreg3[16], 7, 0)
vreg8[16] = bitcat(vregb[7], vregb[9])

2 L Deve

\;;'egzllﬁ] =PHI ... * OQOriginal Critical-Path delay:

The rewritten netlist is more compact comparing with the original one.

43

Early Data-path Synthesis - Example

;r-regl[lsl =load ...
vreg4[8] = subwd(vregl1[16], 8, 0) J—
by CodeGen:

- Directly represent the

vreg2[16] = PHI ... } custom instructions

vreg5[16] = subwd(vreg2[16], 8, 0) J

Convenience provided

vreg7[9] = vreg4[8] + vreg5[8]

vreg6[7] = subwd(vreg3[16], 7, 0)
vreg8[16] = bitcat(vregb[7], vregb[9]) /J

%

2 L1use Dev

Because the HLS-specific operations are directly expressed by the Machinelnstructions.
We can directly analysis the rewritten Machine code to get the delay/cost estimation.

Early Data-path Synthesis

* Apply bit-level and subword-level
optimizations, and LUT mapping (by ABC).
— In fact, these optimizations are available in the

implementation tools.

In summary, Early data-path synthesis can apply low-level operaitmiations.
But In fact, there are also available in the implementation tools which translate the description to implementations.

45

Early Data-path Synthesis

* Apply bit-level and subword-level
optimizations, and LUT mapping (by ABC).
— In fact, these optimizations are available in the

vendor implementation tools.

* Transform the design representation toward
final form.
— Provide better delay estimation to the scheduler.
— Provide better cost estimation to the binder.

However, doing this early could provide more accurate estimation to the scheduler and the binder.

46

Outline

* Introduction

* QOverview of the Shang HLS framework
* The Cross-level Engine

* Kernel-only Software Pipelining

* Experimental Results and Further Work

2012 LLVM Developers' Meeting

47

Kernel-only Software Pipelining

* Do not need to generate the Prologue and
Epilogue.

48

Kernel-only Software Pipelining

* Do not need to generate the Prologue and
Epilogue.

* This reduce “the size of the code”.
— Reduce the pressure to binding algorithm.

49

Kernel-only Software Pipelining

* Do not need to generate the Prologue and
Epilogue.

* This reduce “the size of the code”.
— Reduce the pressure to binding algorithm.

* Based on predicated execution.
— All instructions are predicated in our VISA.

In fact, there are existing technique to perform kernel-only software pipelining on VLWI architecture.

50

Kernel-only Software Pipelining

* Based on predicated execution.
— All instructions are predicated in our V-ISA. \

g

Convenience provided by CodeGen

51

Software Pipelining

» Software pipelined loop execution:

Prologue:) Original Loop body
Fill the pipeline
-]— Kernel: Steady state
B Different stages
8
Epilogue: - —7 of the pipeline
Flush the pipeline -/
N -th N+ 1-th

Iteration Iteration

Software pipelining is a type of out-of-order execution, except that the reordering is done by a compiler.

Software Pipelining

* The kernel is already contains all stages, why
we need to duplicate them in the Prologue
and Epilogue?

Prolcgue:;
Fill the pipeline

} Kernel: Steady state

Epilogue: ‘
Flush the pipeline

Loop Body Folding

* Loop body scheduled by Modulo Scheduling:

54

Loop Body Folding

* Fold the loop body to reflect the fact that the
stages are executed in parallel.

-f
] \

Pipelined MachineBasicBlock

2012 LLVM Developers' Meeting

55

Loop Body Folding

* The Instructions in different stages are packed

into the same bundle.

. .

|

Bundle
>*Inst0
> *Instl
7 *|nst2

*

—

Bundle

e ®

/
=

Pipelined MachineBasicBlock

56

Loop Body Folding

* VReg Def-Use chain across the pipeline stages:

VRegX (Def)=... I
..=VRegX (Use, Kill)

‘ 'VRegX (Def)=... ...=VRegX (Use kill)

Pipelined MachineBasicBlock

2012 LLVM Developers' Meeting 57

After loop-body folding the Def-use chains are also folded, this may result in a wrong live-interval and even break the SSA-form.

57

Loop Body Folding

* PHIs are inserted to preserve SSA-form.

I : S

VRegY = PHI VRegX ...
-VRegX (Use, Kill)

VRegY = PHI VRegX ...
‘t VRegX (Def)=.. Il ..=VReg¥(Use,kill)

Pipelined MachineBasicBlock

. =VRegY (Use,Kill)...

2012 LLVM Developers' Meeting 58

Hence we need to insert PHIs to break the cross-stages Def-use chain.

58

Loop Body Folding

* Predicate each stage:
EnSt1 = lLoopExitCond.

‘ EnSt2 = PHI CurBB, true, Loop-PreHeader, false

U EnSt3 = PHI CurBB, true, Loop-PreHeader, false

To fill and flush the pipeline correctly, we also need to predicate each stage.

59

Loop Body Folding

* Predicate each stage:

S1

H EnSt1 = lLoopExitCond.

EnSt2 = PHI CurBB, true, Loop-PreHeader, false

[I EnSt3 = PHI CurBB, true, Loop-PreHeader, false

| N\
Pipelined MachineBasicBlock 2012 v pevelopers meeting

60

By constructing the predicate chain carefully, we can propagate the stage enable correctly.

60

Execution of the Folded Loop Body

61

Execution of the Folded Loop Body

EEE | H
BN | EEEE | ﬂ

62

Execution of the Folded Loop Body

] ﬂ !
I || I |)
T | I | |

63

Execution of the Folded Loop Body

2012 LLVM Developers' Meeting

64

Execution of the Folded Loop Body

B | N | |
| I

65

Execution of the Folded Loop Body

66

Outline

Introduction

Overview of the Shang HLS framework
The Cross-level Engine

Kernel-only Software Pipelining
Experimental Results and Further Work

2012 LLVM Developers' Meeting

67

Experimental Results

For each programs in CHStone For each metrics of the HW

uShang @ eXCite # LegUp

uShang ®eXCite ® LegUp

Delay (us) = Period (ns) * Cycles / 1000

Equ. Les = LEs + Mults * 115

Where 115 is the LEs required to implement
“A'9xd Mult.

Delay is equal to the product of period and cycles, Equ. LEs is equal to LEs add the product of 115 and the Mults.

68

Wish List and Further work

Access more than one MachineFunction at a
time.

Interprocedural Analyses/Optimizations with
Polly.

Compile flow for heterogeneous architecture.

HLS-specific IR passes, e.g. do not duplicate
function body when inlining.

69

Acknowledgements

Thanks the people involved in this project.
— Qingrui Liu, Junyi Le, Yuelai Yuan, ...

Thanks the LLVM community to provide the
compiler infrastructure.

Thanks SYSU to support this work.

Thanks ADSC to pay my salary.
— So that | can buy the flight ticket.

70

THANKS AND QUESTIONS?

71

